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propagation, with the indication that it cannot be ignored. For the case
of coupled waveguides, it was noted that the coupling is practically
unaffected when the optical axes of one of the waveguides are rotated
with respect to the coordinate-system axes.
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Scattering by an Infinite Elliptic Dielectric Cylinder
Coating Eccentrically a Circular Metallic

or Dielectric Cylinder

Stylianos P. Savaidis and John A. Roumeliotis

Abstract—In this paper, the scattering of a plane electromagnetic wave
by an infinite elliptic dielectric cylinder, coating eccentrically a circular
metallic or dielectric inner cylinder, is treated. The electromagnetic field
is expressed in terms of both circular and elliptical–cylindrical wave
functions, which are connected with one another by well-known expansion
formulas. Translational addition theorems for circular cylindrical wave
functions are also used. If the solution is specialized to small values
of h = k2c=2, where k2 is the wavenumber of the elliptic dielectric
cylinder and c its interfocal distance, semianalytical expressions of the
form S(h) = S(0)[1 + gh2 + O(h4)] are obtained for the scattered
field and the various scattering cross sections of this configuration. The
coefficientsg are independent ofh. Both polarizations are considered for
normal incidence. Graphical results for the scattering cross sections are
given for various values of the parameters.

Index Terms—Eccentric elliptical–circular cylinders, scattering.

I. INTRODUCTION

Scattering from composite bodies is often used for detecting their
internal structure. Analytical solution of such problems is severely
limited by the shape of boundaries. For complicated geometries,
various numerical methods can be used.

Scattering from a dielectric elliptic cylinder coated with another
nonconfocal dielectric one, or from two parallel dielectric elliptic
cylinders, is examined in [1] and [2], respectively.

In this paper, the scattering of an electromagnetic plane wave by
an infinite elliptic dielectric cylinder containing an off-axis metallic
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or dielectric circular inner cylinder, is considered. The geometry
of the scatterer, shown in Fig. 1, is a perturbation of the eccentric
circular one, with radiiR1 andR2. All materials are lossless. Both
polarizations are considered for normal incidence.

Using translational addition theorems for circular cylindrical wave
functions [3] and expansion formulas between circular and elliptical
(Mathieu) wave functions [3], [4], we conclude (after the satisfac-
tion of the boundary conditions and some manipulation) with two
infinite sets of linear nonhomogeneous equations for the expansion
coefficients of the electromagnetic field inside the elliptic dielectric
cylinder.

For general values ofh = k2c=2 these sets can be only solved
numerically by truncation, but forh � 1, a semianalytical solution
is possible. After very lengthy and laborious, but straightforward
calculations, we obtain expressions of the formS(h) = S(0)[1 +

gh2+O(h4)] for the scattered field and the scattering cross sections.
The coefficientsg are independent ofh, while S(0) corresponds to
the eccentric circular problem. The main advantage is that these ex-
pressions are valid for each smallh, freeof Mathieu functions, while
all purely numerical techniques require repetition of the calculation
for each differenth, a very complicated task due to these functions.

This advantage distinguishes this paper from [1], [5], which
contribute more general geometries. By using the solutions of [1]
and [5] to obtain our numerical results, one should repeat the very
complicated steps containing the calculation of the various Mathieu
functions for each differenth.

Apart from its mathematical interest, the elliptical–circular com-
bination of this problem may enhance or decrease the various
scattering cross sections, as compared to those for the eccentric
circular geometry.

The solution of this problem is much more complex and lengthy
than that in the corresponding coaxial one [6] due to the eccentricity,
the presence of a dielectric inner cylinder in one case here, and the
use of different permeabilities for the various regions in this paper.
In [6], the wavenumbers in the elliptic dielectric cylinder and the
surrounding medium were also nearly equal (h �= h2 there), while
here they are different.

II. M ETALLIC INNER CYLINDER

A. E-Wave Polarization

1) Calculation of the Field: We begin with a metallic inner cylin-
der and theE-wave polarization. The incident plane wave normally
impinging on thez-axis has the form [3], [4]
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with �; � the transverse elliptical–cylindrical coordinates with respect
to xOy; Jem(Jom) the even (odd) radial Mathieu functions of the
first kind, andSem(Som) the even (odd) angular Mathieu functions.
The normalization constantsMe(o)

m are given in [4]. The angle
 defines the direction of incidence with respect tox. The time
dependenceexp (j!t) is suppressed throughout.
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Fig. 1. Geometry of the scatterer.

The scattered field is expressed as

E
sc

z =

1

m=0

[PmSem(h3; cos �)Hem(h3; cosh �)

+QmSom(h3; cos �)Hom(h3; cosh �)] (2)

whereHem(Hom) are the even (odd) radial Mathieu functions of
the fourth kind [the superscript (2) is omitted for simplicity].

The field in Region II, expressed in terms of circular cylindrical
wave functions with respect tox1O1y1, and satisfying the boundary
conditionEII

z = 0 at r1 = R1, is

E
II
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� (Ai cos i'1 +Bi sin i'1); x3 = k2R1: (3)

In (3),Ji(Ni) is the cylindrical Bessel function of the first (second)
kind.

In order to satisfy the boundary conditions
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at the elliptical boundary� = �o, we first use the translational
addition theorem for the circular cylindrical wave functions [3], [7]:
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and then the expansion formulas connecting them with the concentric
elliptical ones with respect toxOy [4]:
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In (5) and (6),Zi andZ m represent the Bessel function and the
radial Mathieu function of the same kind, respectively,B

e(o)
n (h; m)

are the expansion coefficients for the Mathieu functions [4] (n; m

are both even or odd),"0 = 1 and"n = 2 for n � 1 is the Neumann
factor, while
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is given by (7) if we replacecos with sin.
Substituting from (5) and (6) into (3), we expressEII

z in ellipti-
cal–cylindrical wave functions with respect toxOy.

By using (1) and (2) and this last expression, we satisfy (4).
We then multiply both members of the resulting equations by
S v(h3; cos �) and use the orthogonal properties of the angular
Mathieu functions [3], [4]. Solving the equation resulting from the
second condition (4) forPv andQv, we obtain

Pv
Qv

=
p
2�

�3

�2

1

i=0

1

n=

1

m=

j
m�n

� B
e

o
n(h; m)M

e

o
mv(h; h3)

M
e

o
m(h)M

e

o
v (h3)

dV
e

o

mi
(h; cosh �)

d�

dHe
o
v(h3; cosh �)

d�
�=�

� (AiJ
c
s
+

ni
�BiJ

s
c
�

ni
) �

p
8�j

�v
Se
o
v(h3; cos  )

M
e

o
v (h3)

�

dJe
o
v(h3; cosh �)

d�

dHe
o
v(h3; cosh �)

d�
�=�

; (v �0
1) (8)

wherev, n, m are all three even or odd:
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Nem(Nom) the even (odd) radial Mathieu functions of the second

kind andM
e
o
m(h) = M

e
o
mm(h; h).

Substituting next from (8) into the equation resulting from the first
(4), we obtain the following two infinite linear sets forAi andBi:
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and v, n, m are all even or odd.
For general values ofh(h3 = qh; q = k3=k2), the sets (11) can be

solved only numerically by truncation, a complicated task due to the
calculation of the Mathieu functions for each differenth. However,
for small h(�1), a semianalytical solution is possible. After very
lengthy (but straightforward) calculations, one can find expansions

of the form
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The analytical expressions of the coefficientsC, T , andD, which
are different for the various superscripts [(11)–(14)], are given in the
Appendix.

For the evaluation ofAi’s andBi’s from (11), we use Cramer’s
rule and the expansions (15). The procedure followed is the same
as in [8] and will not be repeated here. Thus, we again obtain
[8, eq. (17), (18)], with the only difference that the valueq = m

is not excluded here, while the elementsd1; d2; � � � ; dn in the deter-
minant�o0

n are replaced byD1; D2; � � � ; Dn, respectively. Equation
[8, eq. (19)] is also valid, but with superscripts and subscripts as in
the present (11).

In the special case withd = 0, or d = 0 andh� 1 or 'o = 0; �,
we obtain various simplified expressions similar to those described
in detail in [7] for the corresponding interior problem. Thus, for
d = 0, or d = 0 andh � 1, the various quantities appearing here
become identical with the corresponding ones in [6] (for�2 = �3
and h3 ' h).

For h = 0, our results agree with those independently obtained for
the eccentric circular geometry. Finally, forh = 0 andd = 0, they
become well known for two coaxial circular cylinders.

The former observations consist of a check on the accuracy of our
results.

2) The Scattered Far-Field:By using formula [3], [4]
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in (2) and the asymptotic expansion for the Hankel functions, we
obtain the scattered far-field expression and then the differential
[�(')], backscattering or radar (�b), forward (�f ) and total scattering
(Qt) cross sections [6], as shown in (17)–(19) at the bottom of the
page, andm, ` are both even or odd.

The coefficientsPm andQm are given in (8). By substituting the
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lengthy and laborious calculations, relations of the form
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Fig. 2. Backscattering cross section forR1=R2 = 0:5, R2=�3 = 0:5,  � 'o = 90
�, "2="3 = 2:54 (metallic inner cylinder,E wave).

with the expansion coefficients given in the Appendix. Analogous

expansions are obtained forG('), �('), and Qt, as shown in
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Our results were verified by the forward scattering theorem [6].

B. H-Wave Polarization

The incident waveHinc
z and the scattered fieldHsc
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Fig. 3. Backscattering cross section forR1=R2 = 0:5, R2=�3 = 0:7,  � 'o = 60
�, "2="3 = 5:5 (metallic inner cylinder,H wave).

Fig. 4. Forward scattering cross section forR1=R2 = 0:5, R2=�3 = 0:3, d=R2 = 0:4, "2="3 = 2:54 (metallic inner cylinder,E wave).
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the argument). In (4) and the following relations, we replaceE, �2,

�3 with H, "2, "3, respectively. Thus we again obtain (5)–(26), with

the aforementioned changes.

III. D IELECTRIC INNER CYLINDER

If the inner cylinder is dielectric with parameters"1; �1, andk1,
there is also a field inside it, which in theE-wave case is expressed as

E
I

z
=
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Ji(k1r1)(Ui cos i'1 +Wi sin i'1): (27)
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Fig. 5. Forward scattering cross section forR1=R2 = 0:5, R2=�3 = 0:5,  �'o = 60
�, "1="3 = 5:5, "2="3 = 2:54 (dielectric inner cylinder,H wave).

Fig. 6. Total scattering cross section forR1=R2 = 0:5, R2=�3 = 0:3, d=R2 = 0:4, "1="3 = 5:5, "2="3 = 2:54 (dielectric inner cylinder,E wave).

The fieldEII

z , which satisfies the boundary conditions

E
I

z = E
II

z ;
��1
1
@EI

z

@r1
=

��1
2
@EII

z

@r1
(28)

at r1 = R1, has the expression
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The incident and scattered fields are again given by (1) and (2),
respectively. The remaining equations are the same as for a metallic
inner cylinder, with the only difference being thatNi(x3) andJi(x3)
are now replaced everywhere bypEi andqEi , respectively, as can be
seen from (3) and (29).

For theH-wave case (27)–(31) are valid again, withE, �1, �2
replaced byH, "1, "2, respectively. The remainder of the steps are
identical with those for theE-wave case, but with the difference that
�2 and�3 should be replaced by"2, "3, respectively, in (4) and the
relations following it.

IV. NUMERICAL RESULTS AND DISCUSSION

In Figs. 2–6 theg’s for the various scattering cross sections of
the configuration of Fig. 1 are plotted for various values of the
parameters and for both polarizations. In each figure, we also plot the
corresponding scattering cross section forh = 0 (eccentric circular
geometry), which depends only on the difference between the angles
 and'o and not on their distinct values, such ash 6= 0. In this
latter case, each curve is plotted for one distinct value of'o, which
when added to the known �'o gives the corresponding . Thus it
is very easy to calculate the scattering cross sections by the formula

S(h) = S(0)[1+ gh2 +O(h4)], for each smallh and for the values
of the parameters used.S(0) corresponds to the eccentric circular
geometry.

In a more analytical sense, in Figs. 2 and 3 we plotk3�
o
b (for

h = 0) as well as the coefficientsg� . The same is done in Figs. 4
and 5 fork3�of andg� , and finally in Fig. 6 fork3Qo

t andgQ . In
each figure, we have used equal permeabilities in all regions, while
�3 = 2�=k3 is the wavelength in Region III.

A result expected from reciprocity, is that�f has the same values,
i.e., equalg’s for incidence angles differing by� (also with a sum
equal to�, for 'o = 0; �=2; �; 3�=2, or for h = 0). This also holds
for Qt and is the reason for which � 'o in Figs. 4 and 6 varies
only from 0 � �.

Our present approximate results are verified with very good ac-
curacy by the independent, purely numerical, solution of the same
problem for various small values ofh by truncation of (11). The
percentage of error between the two methods is less than 1%, even
for h up to 0.8, at least for the values of the parameters used in
Figs. 2–6, so the restrictionh � 1 is not so severe as may have
first appeared. The terms omitted are of the orderh4, soh can take
relatively large values in our solution.
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APPENDIX

The analytical expressions for the expansion coefficientsC, T , D,
andP , Q, appearing in (15) and (20), respectively, are obtained after
very lengthy but straightforward calculations, by using the definitions
and relations for Mathieu functions [4], [6]. Thus we obtain for a
metallic inner cylinder and for theE-wave polarization as shown in
(A1)–(A4) at the bottom of the previous page, where
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and �0 = �1 = 0, �v = 1 for v � 2, while �v = 8(v2 � 1),
(v 6= 1), �1 = �32, � 0v = �v, (v � 2), � 01 = 32=3. Also, q = k3=k2,
x2 = k2R2, x3 = k2R1, x4 = k3R2, andHv is the cylindrical
Hankel function of the second kind.

The expansion coefficients forP and Q (20) are shown in
(A9)–(A13) at the top of the page, whileAo

i , Bo

i andA(2)

i
, B(2)

i

are obtained from the solution of (11).



1800 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 10, OCTOBER 1997

The same relations are also valid for a metallic inner cylinder and
the H-wave polarization, as well as for a dielectric inner cylinder
and both polarizations, with the changes which are referred to in the
relative sections.
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Enhancements of the Spectral-Domain Approach
for Analysis of Microstrip Y-Junction

B. L. Ooi, M. S. Leong, P. S. Kooi, and T. S. Yeo

Abstract—Some enhancements of the spectral-domain approach in
the polar coordinate are described. A simple and efficient algorithm is
devised to numerically evaluate the contribution of the oscillatory tail of
the two-dimensional (2-D) Sommerfeld integral. For the first time, four
new vectorized basis functions are proposed. Good agreement is obtained
between the simulated results and the measured data for a microstrip
Y-junction in the 4–12 GHz range.

Index Terms—Microstrip, numerical integration, planar transmission
lines, spectral-domain method.

I. INTRODUCTION

The numerical computation of the Sommerfeld integrals in the
polar coordinate has been dealt with by many authors [1], [2].
In 1992, Dvoraket al. [1], [2] have developed some methods to
compute the two-dimensional (2-D) Sommerfeld integrals in the
polar coordinate. Their methods have certain drawbacks in that: 1)
there is a large amount of analytical manipulation that ought to
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be done before the tails of the 2-D Sommerfeld integrals can be
evaluated and 2) the evaluation of the tails of the 2-D Sommerfeld
integrals often involves tedious and complicated functions which
are not applicable for any arbitrary basis functions. Although the
fast Fourier transform (FFT) algorithm [3] can be used to improve
the convergence of the Sommerfeld integrals for the modeling of
nonrectangular discontinuity, the FFT algorithm fails to achieve good
solution because the discretization scheme cannot assure that all
points are located in the cross-points of a regular grid. Moreover,
the modeling of a nonrectangular discontinuity with rectangular cells
is ineffective because the use of a large number of elements is
necessary.

Of course, the Rao’s vector basis function [4] can always be
used to eliminate the staircase approximation. However, this basis
function is not very competitive as compared to the rectangular basis
function and should be used only if it is absolutely necessary. In 1993,
Eibert [6] provided an enhancement on Rautio’s basis function [5] by
using a new expansion function consisting of one triangle and two
adjacent rectangles with arbitrary orientation within the plane of the
circuit. In his method, a removable singularity, which requires extra
analytical manipulations, appears in the Fourier transform of a linear
distribution with triangular support [7] when the polar transform
vector � = k2x + k2y is perpendicular or parallel to any edge of
the triangle [8].

The purpose of this paper is to introduce some enhancements
of the spectral-domain approach and to use four new vectorized
expansion functions based on an extension on Eibert’s work, for the
analysis of an arbitrarily angled microstrip Y-junction. This paper
further describes a new general algorithm for evaluating the 2-D polar
spectral integrals which arise. Finally, some numerical results will be
presented and discussed.

II. GENERAL FORMULATIONS

An arbitrarily angled microstrip Y-junction consisting of a thick-
nessh and a lossless nonmagnetic relative dielectric permittivity"r

is shown in Fig. 1. The global coordinate system with theu-direction
being along the arm and thev-direction being orthogonal to the
u-direction, is also presented in Fig. 1.

In our analysis, four types of current expansion functions are
utilized in the method. They are the arbitrarily oriented pseudo-
exponential window traveling wave (PEW) functions, the vectorized
roof-top subdomain functions (T), the arbitrarily oriented rectangular
subdomain functions (R) and the vectorized triangular–rectangular
subdomain functions (RT).

A. Arbitrarily Oriented Pseudo-Exponential
Window Traveling Wave (PEW)

This current expansion function is an extension of Cicchetti’s work
[9] to the case of arbitrary orientation. The Fourier transforms of the
basis functions can be obtained by application of linear coordinate
transformations and shifting property of Fourier transform to the
direct solutions of the Fourier integrals [9] for the corresponding
functions which are rotated and shifted to an appropriate location
within the xy-plane. The PEW, which is used to simulate the
incoming and outgoing currents on the feedlines, allows us to
extract the scattering parameters without any de-embedding since
the scattering parameters are embedded in the coefficients of the
traveling wave functions.
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